151 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from datetime import date
 | 
						|
import zipfile
 | 
						|
import boto3
 | 
						|
from botocore.exceptions import ClientError
 | 
						|
 | 
						|
################################################################################################
 | 
						|
#
 | 
						|
# Configuration Parameters
 | 
						|
#
 | 
						|
################################################################################################
 | 
						|
 | 
						|
# main change from real AWS Academy access to local emulated localstack is to change the endpoint
 | 
						|
# other than that the same tools (boto3, aws-cli, aws-cdk etc. can be used)
 | 
						|
endpoint_url = "http://localhost.localstack.cloud:4566"
 | 
						|
 | 
						|
# a bucket in S3 will be created to store the counter bucket names need to be world-wide unique ;)
 | 
						|
# Hence we create a bucket name that contains your group number and the current year.
 | 
						|
# The counter will be stores as key (file) "us-east-1" in the bucket (same name as our default region)
 | 
						|
# in the bucket and expects a number in it to increase
 | 
						|
groupNr = 22
 | 
						|
currentYear = date.today().year
 | 
						|
globallyUniqueS3GroupBucketName = "cloudcomp-counter-" + str(currentYear) + "-group" + str(groupNr)
 | 
						|
 | 
						|
# region = 'eu-central-1'
 | 
						|
region = 'us-east-1'
 | 
						|
functionName = 'cloudcomp-counter-lambda-demo'
 | 
						|
 | 
						|
# The Lambda function will run using privileges of a role, that allows the function to access/create
 | 
						|
# resources in AWS (in this case read/write to S3). In AWS Academy you need to use the role that
 | 
						|
# use created for your student account in the lab (see lab readme).
 | 
						|
# see ARN for AWS Academy LabRole function here:
 | 
						|
# https://us-east-1.console.aws.amazon.com/iamv2/home?region=us-east-1#/roles/details/LabRole?section=permissions
 | 
						|
#
 | 
						|
# roleArn = 'arn:aws:iam::309000625112:role/service-role/cloudcomp-counter-demo-role-6rs7pah3'
 | 
						|
# roleArn = 'arn:aws:iam::919927306708:role/cloudcomp-s3-access'
 | 
						|
roleArn = 'arn:aws:iam::488766701848:role/LabRole'
 | 
						|
 | 
						|
# For localstack you can use any role Arn and every secret and access key. Hence you can also use
 | 
						|
# existing AWS Academy credentials to connect to localstack
 | 
						|
 | 
						|
################################################################################################
 | 
						|
#
 | 
						|
# boto3 code
 | 
						|
#
 | 
						|
################################################################################################
 | 
						|
 | 
						|
 | 
						|
def cleanup_s3_bucket(s3_bucket):
 | 
						|
    # Deleting objects
 | 
						|
    for s3_object in s3_bucket.objects.all():
 | 
						|
        s3_object.delete()
 | 
						|
    # Deleting objects versions if S3 versioning enabled
 | 
						|
    for s3_object_ver in s3_bucket.object_versions.all():
 | 
						|
        s3_object_ver.delete()
 | 
						|
 | 
						|
 | 
						|
client = boto3.setup_default_session(region_name=region)
 | 
						|
s3Client = boto3.client('s3', endpoint_url=endpoint_url)
 | 
						|
s3Resource = boto3.resource('s3', endpoint_url=endpoint_url)
 | 
						|
lClient = boto3.client('lambda', endpoint_url=endpoint_url)
 | 
						|
apiClient = boto3.client("apigatewayv2", endpoint_url=endpoint_url)
 | 
						|
 | 
						|
print("Deleting old API gateway...")
 | 
						|
print("------------------------------------")
 | 
						|
response = apiClient.get_apis()
 | 
						|
for api in response["Items"]:
 | 
						|
    if api["Name"] == functionName + '-api':
 | 
						|
        responseDelete = apiClient.delete_api(
 | 
						|
            ApiId=api["ApiId"]
 | 
						|
        )
 | 
						|
 | 
						|
print("Deleting old function...")
 | 
						|
print("------------------------------------")
 | 
						|
try:
 | 
						|
    response = lClient.delete_function(
 | 
						|
        FunctionName=functionName,
 | 
						|
    )
 | 
						|
except lClient.exceptions.ResourceNotFoundException:
 | 
						|
    print('Function not available. No need to delete it.')
 | 
						|
 | 
						|
print("Deleting old bucket...")
 | 
						|
print("------------------------------------")
 | 
						|
 | 
						|
try:
 | 
						|
    currentBucket = s3Resource.Bucket(globallyUniqueS3GroupBucketName)
 | 
						|
    cleanup_s3_bucket(currentBucket)
 | 
						|
    currentBucket.delete()
 | 
						|
except ClientError as e:
 | 
						|
    print(e)
 | 
						|
 | 
						|
print("creating S3 bucket (must be globally unique)...")
 | 
						|
print("------------------------------------")
 | 
						|
 | 
						|
try:
 | 
						|
    response = s3Client.create_bucket(Bucket=globallyUniqueS3GroupBucketName)
 | 
						|
    response = s3Client.put_object(Bucket=globallyUniqueS3GroupBucketName, Key='us-east-1', Body=str(0))
 | 
						|
except ClientError as e:
 | 
						|
    print(e)
 | 
						|
 | 
						|
print("creating new function...")
 | 
						|
print("------------------------------------")
 | 
						|
 | 
						|
zf = zipfile.ZipFile('lambda-deployment-archive.zip', 'w', zipfile.ZIP_DEFLATED)
 | 
						|
zf.write('lambda_function.py')
 | 
						|
zf.close()
 | 
						|
 | 
						|
lambdaFunctionARN = ""
 | 
						|
with open('lambda-deployment-archive.zip', mode='rb') as file:
 | 
						|
    zipfileContent = file.read()
 | 
						|
 | 
						|
    response = lClient.create_function(
 | 
						|
        FunctionName=functionName,
 | 
						|
        Runtime='python3.9',
 | 
						|
        Role=roleArn,
 | 
						|
        Code={
 | 
						|
            'ZipFile': zipfileContent
 | 
						|
        },
 | 
						|
        Handler='lambda_function.lambda_handler',
 | 
						|
        Publish=True,
 | 
						|
        Environment={
 | 
						|
            'Variables': {
 | 
						|
                'bucketName': globallyUniqueS3GroupBucketName
 | 
						|
            }
 | 
						|
        }
 | 
						|
    )
 | 
						|
    lambdaFunctionARN = response['FunctionArn']
 | 
						|
 | 
						|
print("Lambda Function and S3 Bucket to store the counter are available.\n"
 | 
						|
      "\n"
 | 
						|
      "You can now run invoke-function.py to view an increment the counter.\n"
 | 
						|
      "Try to understand how Lambda can be used to cut costs regarding cloud services and what its pros\n"
 | 
						|
      "and cons are.\n")
 | 
						|
 | 
						|
# sadly, AWS Academy Labs don't allow API gateways
 | 
						|
# API gateway would allow getting an HTTP endpoint that we could access directly in the browser,
 | 
						|
# that would call our function, as in the provided demo:
 | 
						|
#
 | 
						|
# https://348yxdily0.execute-api.eu-central-1.amazonaws.com/default/cloudcomp-counter-demo
 | 
						|
 | 
						|
print("creating API gateway...")
 | 
						|
print("------------------------------------")
 | 
						|
 | 
						|
response = apiClient.create_api(
 | 
						|
    Name=functionName + '-api',
 | 
						|
    ProtocolType='HTTP',
 | 
						|
    Target=lambdaFunctionARN
 | 
						|
)
 | 
						|
apiArn = response
 | 
						|
 | 
						|
print("API Endpoint can be reached at: http://" + apiArn["ApiEndpoint"])
 |